Poucos milênios a.C. a inteligência humana se desenvolveu mais, e a necessidade de uma ciência complicada para resolver desde os mais simples problemas até grandes vendas também.
Os grandes matemáticos surgiram antes de Cristo e depois de Cristo, inventando novas fórmulas, soluções e cálculos.
A inteligência do homem era algo tão magnífico, que a Matemática evoluiu mais rápido do que as próprias conclusões e provas matemáticas do homem.
Adição, subtração, multiplicação, divisão, raiz quadrada, potência, frações, razões, eqüações, ineqüações, termos, leis, conjuntos, etc, todos esses princípios e centenas de milhares de outros estavam dentro da ciência complexa, difícil, explicável e lógica que se chamava Matemática.
Os primeiros grandes astrônomos e filósofos deram o essencial a essa complexidade. Vários povos se destacaram, como os egípcios, sumérios, babilônios e gregos. Grandes mentes surgiram e inventaram outros princípios mais complexos e mais difíceis.
Assim, esta história é um valioso instrumento para o ensino/aprendizado da própria matemática. Podemos entender porque cada conceito foi introduzido nesta ciência e porque, no fundo, ele sempre era algo natural no seu momento. Permite também estabelecer conexões com a história, a filosofia, a geografia e várias outras manifestações da cultura.
Conhecendo a história da matemática percebemos que as teorias que hoje aparecem acabadas e elegantes resultaram sempre de desafios que os matemáticos enfrentaram, que foram desenvolvidas com grande esforço e, quase sempre, numa ordem bem diferente daquela em que são apresentadas após todo o processo de descoberta.
Nestas páginas queremos oferecer textos cuidadosamente embasados numa bibliografia cientificamente séria, tão atualizados quanto possível, e redigidos de uma forma simples e direta, facilmente acessível ao leitor.
Distribuição de Gauss
Processos aleatórios independentes igualmente prováveis costumam se agrupar de modo a seguir uma distribuição chamada de "normal" que foi descrita e estudada por Gauss. Nessa experiência, os eventos são as quedas de bolinhas de gude através de um padrão simétrico de obstáculos. Ao se agruparem em um conjuntos de "gavetas" no fim da queda, as bolinhas mostram um padrão de arrumação que tende a uma distribuição gaussiana. O arranjo consiste de uma prancha (de compensado ou outro material conveniente) sobre o qual é montado um uma espécie de zig-zag de obstáculos triangulares. Bolinhas de gude caem de um funil no alto e vão caindo pelos caminhos através dos obstáculos até se agruparem em uma série de colunas no fim da prancha. À medida que o número de bolnhas nas colunas vai crescendo, o padrão que elas formam vai se aproximando da distribuição de Gauss, a famosa curva na forma de sino. Essa distribuição mostra que a posição mais provável de uma bolinha ao fim de seu zig-zag é a posição central e, quanto mais distante for a posição de uma coluna desse centro menor a probabilidade de uma bolinha cair nela.
Esquema do arranjo para demonstrar a distribuição de Gauss.A curva amarela mostra a distribuiçao teórica.
Análise
A distribuição de Gauss originalmente serve para mostrar como se distribuem os erros em uma medida experimental. Mas, pode também mostrar como se distribuem os dados em várias situações originadas de eventos mutuamente independentes. Os professores, por exemplo, costumam acreditar que as notas de seus alunos se distribuem gaussianamente em torno da nota média. Isso nem sempre é verdade, mesmo supondo que não haja cola. Mas, de qualquer forma, a distribuição de Gauss aparece muito frequentemente nas estatísticas.
Matematicamente, essa distribuição pode ser escrita como:
F(x) = H e-h2(x-m)2
Veja a figura. A curva correspondente a essa fórmula tem uma forma de sino com um valor máximo H que ocorre quando a variável x é igual a m, isto é, a média e o máximo coincidem. A largura da curva é controlada pelo valor de h. Quanto maior h, mais estreita é a curva.
Nenhum comentário:
Postar um comentário